Cubature Information SMC-PHD for Multi-Target Tracking
نویسندگان
چکیده
In multi-target tracking, the key problem lies in estimating the number and states of individual targets, in which the challenge is the time-varying multi-target numbers and states. Recently, several multi-target tracking approaches, based on the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter, have been presented to solve such a problem. However, most of these approaches select the transition density as the importance sampling (IS) function, which is inefficient in a nonlinear scenario. To enhance the performance of the conventional SMC-PHD filter, we propose in this paper two approaches using the cubature information filter (CIF) for multi-target tracking. More specifically, we first apply the posterior intensity as the IS function. Then, we propose to utilize the CIF algorithm with a gating method to calculate the IS function, namely CISMC-PHD approach. Meanwhile, a fast implementation of the CISMC-PHD approach is proposed, which clusters the particles into several groups according to the Gaussian mixture components. With the constructed components, the IS function is approximated instead of particles. As a result, the computational complexity of the CISMC-PHD approach can be significantly reduced. The simulation results demonstrate the effectiveness of our approaches.
منابع مشابه
Unscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کاملMulti-target tracking with PHD filter using Doppler-only measurements
In this paper, we address the problem of multi-target detection and tracking over a network of separately located Doppler-shift measuring sensors. For this challenging problem, we propose to use the probability hypothesis density (PHD) filter and present two implementations of the PHD filter, namely the sequential Monte Carlo PHD (SMC-PHD) and the Gaussian mixture PHD (GM-PHD) filters. Performa...
متن کاملA Novel Square-Root Cubature Information Weighted Consensus Filter Algorithm for Multi-Target Tracking in Distributed Camera Networks
This paper deals with the problem of multi-target tracking in a distributed camera network using the square-root cubature information filter (SCIF). SCIF is an efficient and robust nonlinear filter for multi-sensor data fusion. In camera networks, multiple cameras are arranged in a dispersed manner to cover a large area, and the target may appear in the blind area due to the limited field of vi...
متن کاملMulti-Target State Extraction for the SMC-PHD Filter
The sequential Monte Carlo probability hypothesis density (SMC-PHD) filter has been demonstrated to be a favorable method for multi-target tracking. However, the time-varying target states need to be extracted from the particle approximation of the posterior PHD, which is difficult to implement due to the unknown relations between the large amount of particles and the PHD peaks representing pot...
متن کاملClutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Sensors
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2016